Valproic acid-induced histone acetylation suppresses CYP19 gene expression and inhibits the growth and survival of endometrial stromal cells.
نویسندگان
چکیده
Endometriosis is a common type of estrogen‑dependent, gynecological and chronic inflammatory disease. Epigenetics refers to changes in gene expression that occur without altering the DNA sequence or DNA content. Histone modification dominates epigenetics, and histone acetylation is the most extensively studied type of histone modification. The CYP19 gene is the gene that encodes P450 aromatase, which regulates the synthesis of estrogen. Hence, we conducted this study to investigate whether histone acetylation has an effect on CYP19 expression and whether histone acetylation is related to endometrial stromal cells (ESCs). Reverse transcription-quantitative polymerase chain reaction (RT‑qPCR), western blot analysis and chromatin immunoprecipitation assays were performed. The results revealed that valproic acid (VPA) significantly promoted histone acetylation in the ESCs, which inhibited histone acetylation in the promoter region of the CYP19 gene, thus suppressing its expression. We also noted that VPA inhibited cell viability and proliferation, and induced the apoptosis, of ESCs. The findings of our study on histone acetylation, endometriosis and the CYP19 gene provide insight which may aid in the research of histone acetylation and suggest that the CYP19 gene may be a novel therapeutic target and method for the treatment of endometriosis.
منابع مشابه
Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملP-117: Gene Expression and Developmental State of Mouse Cloned Embryos after Treatment with Histone Deacetylase Inhibitor,Suberoylanilide Hydroxamic Acid (SAHA)
Background: It is known that acetylation level of the nuclear histones in cloned embryos is lower compare to normally developed embryos. Histone deacetylas inhibitors (HDACi) with improvement of acetylation level in these embryos can affect embryo quality in pre-implantation stage and expression level of different genes especially developmental genes. Materials and Methods: In this research, SA...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملComparative Analysis of the Effects of Valproic Acid and Tamoxifen on Proliferation, and Apoptosis of Human Hepatocellular Carcinoma WCH 17 CellLin
Background: Histone deacetylation of tumor suppressor genes such as estrogen receptor alpha (ERα) can induce cancer, which is reversible by epi-drugs such as valproic acid (VPA). The previous result indicated that tamoxifen (TAM) induced apoptosis in hepatocellular carcinoma (HCC). This study was designed to assess the apoptotic and antiproliferative effects of VPA and TAM and also the ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2015